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Abstract

An analytic theory of cumulative multibunch beam breakup in linear colliders

is developed. Included is a linear variation of transverse focusing across the

bunch train as might be applied, e.g., by chirping the radiofrequency power

sources or by using radiofrequency quadrupole magnets. The focusing varia-

tion saturates the exponential growth of the beam breakup and establishes an

algebraic decay of the transverse bunch displacement versus bunch number.

A closed-form expression for the transverse displacement is developed. It is

used to quantify the total normalized emittance and thereby isolate the region

of parameter space corresponding to high multibunch luminosity.
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To be useful for high-energy physics, an e+e− linear collider must deliver high-energy,

high-luminosity beams to the interaction point. The luminosity scales as Pb/(Ebε̃1/2
y ) [1], in

which Pb, Eb, and ε̃y denote the e+e− beams’ power, energy, and root-mean-square (rms)

normalized vertical emittance, respectively. Consequently, attaining the required high lumi-

nosity involves rigorously controlling the quality of high-current beams. This is especially

true concerning ε̃y. For example, the Next Linear Collider (NLC) design comprises two main

linear accelerators (linacs), one for e+ and one for e−, each delivering a flat 1 TeV beam,

with horizontal and vertical emittances ε̃x ∼ 4 µm and ε̃y ∼ 0.1 µm, respectively [2]. The

linacs are long (∼10 km) to achieve the high final energy, and concern over beam instabilities

is correspondingly heightened.

One worrisome instability is that due to cumulative multibunch beam breakup (BBU).

It arises from beam-excited transverse wakes in the accelerating radiofrequency (rf) cavities.

Specifically, an imperfectly injected initial bunch excites one or more deflecting modes in the

first rf cavity, which then deflect trailing bunches by amounts that depend on their phases

relative to the deflecting modes. Trailing bunches that are deflected further away from the

beam axis can couple more strongly to these modes in downstream cavities so that the

influence of the deflecting modes on the bunch train grows as it moves down the linac. The

instability is thereby “cumulative”, and it is “multibunch” in the sense that leading bunches

influence trailing bunches by way of the deflecting wake. The bunch train exiting the linac

is transversely enlarged; its projected emittance (and therefore luminosity) is degraded.

Continuing with the NLC as an example, the main linacs each consist of several thousand

accelerating X-band (11.424 GHz) cells. The cells are assembled into arrays of 206-cell

Rounded Damped Detuned Structures (RDDS) [3] specially designed to keep long-range

transverse wakes small, so that the RDDS is effectively the “fundamental” accelerating unit

of the linac. A prototypical RDDS wake amplitude is illustrated in Fig. 1. It arises from a

distribution of deflecting modes. To a reasonable approximation the wake may be modeled

as a single deflecting dipole mode of representative angular frequency ω, nominally the center

frequency in the distribution (about 15 GHz for Fig. 1), and representative quality factor Q.
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The NLC bunch train consists of 90 bunches spaced τ=2.8 ns apart and is therefore about 250

ns long. Thus, the effective Q is infinite over most of the bunch train, though the wake does

fall off during the tail. In keeping with Fig. 1, the following development is based on a single

deflecting dipole mode representative of that found not in a single rf cell, but rather in a

complete RDDS. Specifically, the wake is taken to be w(ζ) = w0Θ(ζ)e−ζ/2Q sin ζ, in which w0

is the wake amplitude, Θ(ζ) is the unit step function, and ζ/ω= t−s/c is the time measured

after the arrival of the first bunch at position s along the linac. One cannot purposely zero the

deflecting-wake kick by putting the bunches at wake zero-crossings because RDDS disallows

actively adjusting a deflecting mode to make its frequency a multiple of the accelerating-

mode frequency.

In a “continuum approximation” in which the discrete transverse kicks imparted by the

rf structures are smoothed along the linac, the equation of transverse motion is [4]:[
1

γ

∂

∂σ

(
γ
∂

∂σ

)
+ κ2

]
x(σ, ζ) = ε

∫ ζ

0
dζ ′w(ζ − ζ ′)F (ζ ′)x(σ, ζ ′) . (1)

Here, σ = s/L denotes location along the linac normalized to the total linac length L, i.e.,

0≤σ≤1; κ is the net transverse focusing wavenumber multiplied by L; x is the transverse

displacement of the beam centroid from the axis; F (ζ)=I(ζ)/Ī is a form factor involving the

current I(ζ) and its time-average Ī; and ε = w0qeL2/(γmc2ωτ ) is the dimensionless BBU

coupling strength, in which q denotes the bunch charge, and e and γmc2 denote the electron

charge and total energy, respectively. Table 1 lists nominal linear-collider parameters, inputs

we use for numerical examples.

One method for actively mitigating BBU is to vary the focusing strength along the bunch

train [5]. Ideally this would remove the time dependence so that x(σ, ζ) → x(σ), in which

case the required focusing strength is, from Eq. (1), κ2(σ, ζ) = κ2(σ) + ε(σ)
∫ ζ
0 dζ

′w(ζ −

ζ ′)F (ζ ′). However, because the wake varies rapidly, one cannot achieve this requirement in

practice. Instead, by chirping the rf power input to the cavities, or by using rf-quadrupole

magnets, one can affect a simpler variation, for example a linear variation in time: κ(σ, ζ) =

κ(σ) + κ,ζ (σ, 0)ζ. In detailed simulations of a contemporary NLC design, Stupakov found
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that a small (%-level) linear variation could substantially damp multibunch BBU [6].

Our principal goal here is analytically to quantify and explain the benefit of a linear

focusing variation. After summarizing the procedure for solving Eq. (1), we write a closed-

form solution for the transverse displacement, use it to calculate the total emittance, and

then use the emittance to isolate the region of parameter space corresponding to viable linear-

collider designs. In developing the solution we incorporate approximations appropriate to

a linear-collider design: zero-length (δ-function) bunches, adiabatic variation of parameters

along the linac, and strong focusing. Specifically, we take the dependence of focusing strength

on beam energy to be κ∝γ−1/2, a good model for the NLC lattice and one that lends itself

to analytic treatment. The first step is to rewrite Eq. (1) in terms of a “chirp-modified”

wake. With a new variable ξ(σ, ζ) ≡
√
γ(σ)x(σ, ζ)e−iζ∆(σ), wherein ∆(σ) ≡

∫ σ
0 dσ

′κ,ζ (σ′, 0),

and with strong focusing, Eq. (1) takes a spatially harmonic form:[
∂2

∂σ2
+ κ2(σ)

]
ξ(σ, ζ) ' ε(σ)

∫ ζ

0
dζ ′w∆(σ, ζ − ζ ′)F (ζ ′)ξ(σ, ζ ′) , (2)

the chirp-modified wake being w∆(σ, ζ) ≡ w(ζ)e−iζ∆(σ). This is an “eikonal approxima-

tion” [7] with a subtlety: if the focusing chirp were established through an energy spread,

then γ(σ) → γ(σ, ζ), and a factor γ−1/2(σ, ζ ′) would be trapped in the integration over ζ ′.

Taking this factor out of the integral then makes Eq. (2) only a model, but one consistent

with strong focusing in the sense that the desired energy spread will be commensurate with

ε, a quantity that is small compared to κ2. Noting that w∆ introduces a complex effective

Q, namely (2Qeff )−1 = (2Q)−1 + i∆, one sees immediately that the chirp is important if Q

is high, but is masked (and not needed) if Q is sufficiently low.

A formal solution for ξ(σ, ζ), and in turn for the displacement xM(σ) ≡ x(σ, ζ=Mωτ ) of

the M th bunch, is obtained by Fourier-transforming Eq. (2) in time, solving the transformed

equation with the WKBJ method as is appropriate for adiabaticity, and Fourier-inverting

the solution [4,8]:

xM(σ) =
1

2π

M∑
m=0

e−m
ωτ
2Q

∫ π

−π
dθ e−imθ

{
xM−m(0)C(σ, θ;M) + x′M−m(0)

S(σ, θ;M)

Λ(0, θ)

}
, (3)
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in which

Λ(σ, θ) ≡ κ(σ)

{
1− ε(σ)

4κ2(σ)

ωτ sinωτ

cos[θ+ ωτ∆(σ)]− cosωτ

}
(4)

is an auxiliary function reflecting the coupling between the bunch spacing and the deflecting-

mode frequency, and
C(σ, θ;M)

S(σ, θ;M)]

 ≡
√√√√Λ(0, θ)

Λ(σ, θ)


<

=

 exp
[
iMωτ∆(σ) +

∫ σ

0
dσ′Λ(σ′, θ)

]
(5)

are cosine-like and sine-like functionals, respectively. The algebraic sign of ∆(σ) affects

only the phase of xM(σ); that this is so can be seen from Eq. (3) upon taking θ → −θ and

remembering that xM is real. For the envelope bounding the tranverse amplitudes, the effect

of a linear increase in focusing from head to tail is the same as a linear decrease. Moreover,

with κ∝ γ−1/2 and ε∝ γ−1, it is easy to treat arbitrary acceleration, viz., arbitrary γ(σ).

The injection offsets xM(0) and angles x′M(0) are also arbitrary; what follows applies, for

concreteness, to a misaligned beam for which xM(0)=x0 and x′M(0)=0 for every bunch M .

We decompose the sum in Eq. (3) into two parts:
∑M

0 =
∑∞

0 −
∑∞
M . The first part

pertains to the “steady-state” displacement xss that would arise were the deflecting wake

first seeded with an infinitely long bunch train immediately preceding the actual bunch train.

Given strong focusing, the steady-state displacement is

xss(σ,Mωτ ) ' x0

[
γ(0)

γ(σ)

]1/4

cos
[
Mωτ∆(σ) +

∫ σ

0
dσ′κ(σ′)

]
; (6)

a nonzero focusing variation establishes a harmonic dependence of xss on M . The second

part pertains to the “transient” displacement δxM ≡ xM−xss. Saddle-point integration,

done by closely following the procedure detailed in Ref. [4], gives a closed-form solution for

δxM , the form of which depends on the region of parameter space under consideration. For

parameters relevant to a linear collider, the bounding envelope of δxM takes the form:

|δxM|
x0

'
[
γ(0)

γ(σ)

]1/4
√
E exp

[
c(η)E −M ωτ

2Q

]
4M
√

2π | sin(ωτ/2)|
×


1/|1− η2|1/4 ; η not near 1(

4
3

)1/6 Γ(1/3)√
2π

E1/6 ; η = 1.
(7)
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The auxiliary relations comprising Eq. (7) are:

E(σ,M) = Σ(1)

[
w0qeL2

κ̄γ(0)mc2

Σ(σ)

Σ(1)
M

]1/2

;

η(σ,M) =
κ̄

2E(σ,M)
|fγ|

Σ(σ)

Σ(1)

M

M ;

c(η) =


1
2

[√
1− η2 + 1

2η
arctan

(
2η
√

1−η2

1−2η2

)]
; η < 1

π
4η

; η ≥ 1;

Σ(σ) =
∫ σ

0
dσ′

[
γ(0)

γ(σ′)

]1/2

=
2
√
γ(0)

[√
γ(σ)−

√
γ(0)

]
γ(1)− γ(0)

;

in which κ̄ is the focusing strength averaged over the linac;M is the total number of bunches

in the train; |fγ| is the magnitude of the total fractional energy spread across the bunch, or

twice the total fractional focusing variation, and is constant along the linac; and the second

equality for the generalized spatial coordinate Σ pertains to constant acceleration for which

γ∝σ, the case we use for numerical examples.

Fig. 2 illustrates good agreement between the envelope calculated analytically from

Eq. (7) and bunch displacements calculated numerically from Eq. (1). We have also nu-

merically solved a discrete version of Eq. (1) in which the cavities and focusing elements are

localized entities; the solution overlaps that of Fig. 2. In addition, we considered separately

the cases of linear variation of the focusing strength and of the beam energy; again, the

numerical solutions closely agree for linear-collider parameters. In turn, Fig. 2 is a good

indicator of the utility of the analytic solution for quantifying multibunch BBU in a linear

collider.

The expression for |δxM | in Eq. (7) reflects a number of physical processes. The co-

efficient involving beam energy manifests adiabatic damping. The factor | sin(ωτ/2)| is a

relic of a resonance function deriving from the coupling between the bunch spacing and

the deflecting-mode frequency. Resonances lie near even-order wake zero-crossings [4]; be-

cause the solution is valid only away from zero-crossing, resonance is removed. The focusing

variation represented by |fγ| regulates exponential growth, and finite Q yields exponential

damping. An unphysical artifact of the saddle-point integration is also present, namely a lo-
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calized singularity at η=1. In actuality |δxM | varies smoothly through the value provided in

Eq. (7) for η=1; we analytically continue our plots by hand through this value. Yet “η=1”

does have special physical significance: it demarks the onset of saturation of exponential

growth and, with infinite Q, algebraic decay of the envelope. For η≥1 the “growth factor”

c(η)E is independent of bunch number M and of linac coordinate σ; temporal “damping”

then ensues through a negative power of M , and spatial “damping” ensues adiabatically

as already mentioned. Therefore η = 1 demarks a global maximum in the envelope |δxM|.

The effect of the focusing variation is saturation of the exponential growth, not damping;

its action distinctly differs from that of a real effective Q.

The special significance of η= 1 translates into a criterion for the focusing variation to

be effective. Specifically, one should choose a value of fγ that ensures η(1,M)>1, i.e., that

η = 1 is reached somewhere along the bunch train before it leaves the linac. According to

the auxiliary relations to Eq. (7), the criterion is |fγ| > 2E(1,M)/κ̄.

The steady-state and transient displacements, being uncorrelated, comprise a measure of

the total projected normalized emittance as ε ≡ (|xss|2 + |δxM|2max) γκ/L, wherein |xss| =

x0[γ(0)/γ(σ)]1/4 per Eq. (6), and |δxM|max is the maximum value of the transient envelope

reached along the bunch train. If η < 1 always, then the maximum is reached at the last

bunch M =M. Otherwise, the maximum corresponds to the value of |δxM | at which η=1.

Imposing a focusing variation will reduce the transient envelope, but it also will establish a

harmonic variation of xss with M and thereby introduce a nonzero steady-state emittance

εss. For this reason the quantity of interest is the ratio (ε − εss)/εss = (|δxM|max/|xss|)2.

This quantity, calculated from the analytic expressions given in Eqs. (6) and (7), is plotted

against |fγ| in Fig. 3 for various values of w0. Fig. 3 points to the region of parameter

space that, respecting multibunch BBU, admits viable linear-collider designs. In particular

it shows that to achieve low multibunch emittance without aid from a focusing variation

requires small wake amplitudes. Otherwise, as depicted, a modest energy spread relieves the

constraint on wake amplitude.

In summary, designing a linear collider involves trading between wake amplitude and
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energy spread (or focusing variation). For the NLC, the wake amplitude is ultimately deter-

mined by cell-to-cell coupling in the RDDS, which in turn relates to achievable fabrication

tolerances, and to the efficacy of its higher-order-mode outcoupler. There are, of course,

practical limitations on the energy spread, to include longitudinal beam requirements at the

interaction point, lattice chromaticity, etc. Nonetheless, introducing a modest energy spread

constitutes a backup in case sufficiently low wake amplitudes prove generally unfeasible.

The authors are grateful for stimulating discussions with M. Syphers, especially as con-

cerns the interpretation of multibunch emittance, and with G. Stupakov, who provided

specifics of the NLC design. This work was supported by the Universities Research Associ-

ation, Inc., under contract DE-AC02-76CH00300 with the U.S. Department of Energy.
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TABLES

Table 1. Nominal Top-Level Linear-Collider Design Parameters

Parameter Value

Total initial energy Ei = γ(0)mc2 10 GeV

Total final energy Ef = γ(1)mc2 1 TeV

Linac length L 10 km

κ̄ = 2π× total no. betatron periods 2π × 100

Bunch charge q 1 nC

No. bunches in trainM 90

Bunch spacing τ 2.8 ns

Deflecting-mode angular frequency ω 2π × 14.95 GHz

Deflecting-mode quality factor Q ∞

Wake amplitude w0 1 V/pC/mm/m
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FIGURES

FIG. 1. Amplitude of deflecting wake in a prototypical RDDS. This plot is representative; the

amplitude is sensitively dependent on construction tolerances and higher-order-mode outcoupling.

It can be lower or higher than indicated here.

FIG. 2. Analytic envelope at the linac exit (solid curve) plotted against the transverse displace-

ment of bunches calculated numerically. Inputs are per Table 1 with total energy spreads of 1.5%

(top) and 3% (bottom).

FIG. 3. Total normalized transverse multibunch emittance at the linac exit, referenced to

its steady-state value, vs. total energy spread across the bunch train, plotted for various wake

amplitudes. Inputs are per Table 1.
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